[14779 G3 X0:6732 V00413 10,0376 J0.0548)
Y 14780 G3 X0.6841 Y0.0363 10.0554 10.1071 s .
14781 63 X0.6996 Y0.0309 10.0748 10.1883 3 D P rl nte r G _co e
14782 63 X0.7131 Y0.0278 10.6231 0.071
14783 63 X0.7289 Y0.0272 10.6115 10.0887

14784 G3 X0.7342 Y0.0275 1-0.0048 10.1473
14785 63 X0.7455 Y0.0287 1-0.0101 10.147

14786 G3 X0.7727 Y0.0354 1-0.0215 J0.1458 c) H
14787 G3 X0.7932 Y0.0482 I-0.0181 J0.0516 o m m a n S u Is
14788 G3 X0.8072 Y0.0698 I-0.0454 10.0447 L

14789 63 X0.8136 Y0.1025 1-0.0887 J0.0344

14790 G3 X0.8136 Y0.1045 1-0.0751 J0.002

14791 63 X0.8129 ¥0.1146 1-0.0752 10 .
14792 G3 X0.8107 Y0.1237 1-0.0432 1-0.0059 I rl
14793 G3 X0.8077 Y0.1304 1-0.0296 J-0.0092

14794 63 X0.8023 Y0.1374 1-0.0314 J-0.0187

14795 63 X0.7952 Y0.144 1-0.0456 1-0.0417

14796 G3 X0.7838 Y0.152 1-0.0676 J-0.0849

14797 G3 X0.7704 Y0.1594 1-0.112 1-0.1849

14798 63 X0.752 Y0.1683 1-0.1679 J-0.3274

14799 63 X0.7445 Y0.1715 1-0.1311 J-0.295

14800 63 X0.7325 Y0.1764 I1-0.1999 1-0.482

14801 G1 X@.7134 Y0.1862

14802 G2 X0.7112 Y0.1875 10.0114 10.0223

14803 G2 X0.6999 Y0.1961 10.0527)0.0811

14804 G2 X0.6904 Y0.2059 10.057 J0.0646

14805 G2 X0.6815 Y0.2217 10.0399 10.0328

14806 G1 X0.6853 Y0.223 F60

14807 G2 X0.6824 Y0.2396 10.0473 18,0155 FAe

1400/c> va'co2s va'1< 1a acas 1a

Understanding G-code commands will unlock the next level of 3D printing. Read on to quickly learn
the basics of this code!

Simply put, G-code is a programming language for computer numerical control

(CNC). In other words, it's the language spoken by a computer controlling a machine,
and it communicates all commands required for movement and other actions.

While G-code is the standard language for different desktop and industrial machinery,
we might be most familiar with it through our 3D printers. You may not have dealt
with it so far, and that’s actually normal since 3D slicers generate the code
“automagically”.

Yet, if you want to develop a deeper understanding of 3D printing, it's essential to
learn the basics of G-code. This knowledge will allow you to troubleshoot and control
print processes much better, while also enabling the customization of 3D printer
firmware like RepRap and Marlin.

In this article, we’ll cover the basics of G-code, including how to read, understand,
and write a few lines of commands, providing a solid background for even absolute
beginners in coding. Without further ado, then, let’s start from the beginning!

What Is It?

;Layer count: 114

;LAYER: O

M107

GO F3600 X96.354 Y97.539 20.300
; TYPE: SKIRT

G1 F1200 X99.570 Y97.539 £0.38592
G1 X99.743 Y97.444 E0.40960
G1 X100.304 Y97.219 E0.48214
G1 X101.011 Y97.004 EO.57081
G1 X101.151 Y96.991 E0.58769
G1 X101.340 Y96.950 E0.61089
G1 X101.876 Y96.878 E0.67579
G1 X102.069 Y96.869 E0.69898
G1 X102.069 Y91.739 E1.31458
G1 X109.740 Y91.739 E2.23510
G1 X113.169 Y93.365 E2.69049
G1 X113.169 Y96.819 E3.10497
G1 X123.696 Y96.783 E4.36822
G1 X124.248 Y94.339 E4.66889
C1 X128.551 Y94.339 E5.18525
G1 X130.147 Y94.739 E5.38269
G1 X131.276 YV94.739 ES5.51817
G1 X131.657 Y95.118 ES5.58266
G1 X133.234 Y95.513 E5.77775
C1 X133.083 Y96.535 £5.90172
G1 X135.508 Y98.947 E6.31215
G1 X133.670 Y101.313 E6.67168
G1 X133.824 Y101.822 E6.73549

G-code commands are used to instruct a machine to perform specific actions (Source: AllI3DP)

For those strangers to programming in general, think of G-code as sequential lines of instructions,
each telling the 3D printer to perform a specific task. These lines are known as commands, and the
printer executes them one by one until reaching the end of the code.

While the term “G-code” is used to reference the programming language as a whole, it’s also one of
two types of commands used in 3D printing: “general” and “miscellaneous” commands.

General command lines are responsible for types of motion in a 3D printer. Such commands are
identified by the letter ‘G’, as in G-commands. Besides controlling the three plus axes movement
performed by the printhead, they’re also in charge of filament extrusion.

The miscellaneous commands, on the other hand, instruct the machine to perform non-geometric
tasks. In 3D printing, such tasks include heating commands for the nozzle and bed and also fan
control, among many others, as we’'ll see. Miscellaneous commands are identified with the letter ‘M’.

The Syntax

—» Command Type
' Command Parameters

M| YL <Par1> <Par2>

» Command Number

Command lines consist of identification and parameters (Source: Lucas Carolo via AlI3DP)

Every G-code command line follows a certain syntax. Each line corresponds to only one command,
which can lead to codes that are awfully lengthy.

The first argument of any given line is the command code itself. As we have seen, it can be either a
‘G’ or an ‘M’ code type, followed by a number that identifies the command. For instance, “G0”
corresponds to a linear move command.

Next comes the parameters that more accurately define the command. For a GO linear move, these
parameters include the final position and how fast it moves, also identified by upper-case letters.
Each command has its own set of parameters as we’ll see soon.

A Note on G-code Comments

Before we get started, when we go over the various commands, you'll see semicolons after a letter
and number that explain what the code does. Here’s an example of a line that has a code comment:

Gl X25 Y5 ; | am a code conment!

Programmers often need to include explanations in plain English so that other programmers can
understand certain lines or sections of code. It might also happen that you forget why you coded
things in a certain way, resulting in a difficult time figuring things out again.

To solve this problem are code comments. Comments include anything (on the same line) following a
semicolon and are completely ignored by the machine when it executes the G-code. In this way, they
are purely meant for programmers’ eyes.

As there are literally hundreds of G-code commands, we’ll cover the most basic and important ones
in the following sections. Once you get the hang of it, you’ll be able to explore other commands from
reference sheets on your own.

GO & G1: Linear Motion

] i X<pos> Y<pos> Z<pos> F<rate> E<pos>

\ X<pos> Y<pos> Z<pos> F<rate> E<pos>

GO and G1 commands are responsible for linear motion and extrusion (Source: Lucas Carolo via AlI3DP)

The GO and G1 commands both perform linear movements. By convention, GO is used for non-
extrusion movements like initial and travel moves, while G1 encompasses all the extruding linear
motion.

Both commands function the same, though. The parameters for GO or G1 include the final positions
for all the X-, Y-, and Z-axes, the amount of extrusion to be performed during the move, and the
speed, specified by the feed rate in the set units.

Example

Gl X90 Y50 Z0.5 F3000 E1 tellsthe printer to move in a straight line (G1) towards the final
coordinates X =90 mm, Y =50 mm, Z = 0.5 mm at a feed rate (F) of 3,000 mm/min while extruding
(E) 1 mm of material in the extruder.

Most linear moves are performed within a single layer, meaning that the Z coordinate is usually
omitted from the command line.

G90 & G91: Absolute & Relative Positioning

X=? X30 X=? X=10 X20 X=30
© ° © ° °

X=
30 20

Absolute Positioning Relative Positioning

Relative positioning is defined by the previous coordinates, while absolute isn't (Source: Lucas Carolo via AlI3DP)

The G90 and G91 commands tell the machine how to interpret coordinates used for movement. G90
establishes “absolute positioning”, which is usually the default, while G91 is for “relative positioning”.

Neither command requires any parameters, and setting one automatically cancels the other. The way
positioning works is quite simple, so let’s jump right in.

Example

Let’s say we want to move the printhead to X=30 in a line. In absolute positioning mode, that would
look like this:

&0 ; sets absolute positioning G X30 ; noves to the X = 30
coordi nate

This simple move would tell the printer to move the printhead so that it’s positioned at X = 30.
Now, for a relative positioning move, we need to know where the printhead is currently. Let’s
assume it’s at X = 10:

@1 ; sets relative positioning G X20 ; noves +20 nm al ong the X-
axi s

G91 first tells the machine to interpret the coordinates as relative to the current position (X = 10).
Knowing that, the machine simply needs to move 20 mm in the X-axis positive direction, thus
reaching X = 30, as we’d like.

G28 & G29: Auto Home & Bed Leveling

Auto-Home X1 [Y][Z]
Bed Leveling

G28 and G29 are useful for the initialization phase (Source: Lucas Carolo via AlI3DP)

We call “homing” the process of setting the physical limits of all movement axes. The G28 command
will perform this task by moving the printhead until it triggers end-stops to acknowledge the limits.

Homing is important not only for the machine to orient itself but also to prevent the printhead from
moving outside the boundaries. The G28 command is usually performed before every print process.

Another command, G29, starts the automatic bed leveling sequence. There are many different
methods for leveling a bed prior to printing, as this is usually set by firmware and not by the final
users. For this reason, we won’t get into details surrounding the methods and command parameters.
Just know that G29 is usually sent after an auto-home (G28) and should perform the automatic bed
leveling as determined by the firmware.

Example

&8 X Y ; hone the X and Y axes only

&8 ; hone all axes

Specific axis can be individually homed by including X, Y, or Z as parameters. Otherwise, G28 alone
will home all three.

X9 ; performautomatic bed | eveling sequence

If you want to run an auto bed leveling sequence, remember to send G29 after performing the
homing process.

M104, M109, M140, & M190: Set Temperature

OTEND M | S<temp> I<index>
M S<temp> R<temp> T<index>

- M S<temp> I<index>
M ' S<temp> R<temp> T<index>

These M-code commands are responsible for controlling hot end and bed temperature (Source: Lucas Carolo via AllI3DP)
These are essential miscellaneous commands, which again, don’t involve any motion.

To start, the M104 command sets a target temperature for the hot end to reach and keep it until
otherwise instructed.

Some of the parameters include the actual temperature value (S) and which printhead (T) to heat (for
multiple extrusion setups).

Example

MLO4 S210 ; set target tenperature for hot end to 210 degrees

This command line instructs the machine to heat up its hot end to 210 °C and assumes there is only
one hot end in this extrusion setup. After setting the target temperature, the printer will go on to
perform the next command line while heating the hot end.

Alternatively, if we wanted to wait until that target is reached before moving on to the next line, we
can use the M109 command.

MLO9 S210 ; set target tenperature for hot end to 210 degrees and do
not hing until reached

Setting the bed temperature is very similar to the hot end, but instead with the M140 and M190
commands:

ML40 S110 ; set target tenperature for bed to 110 degrees

MLO90 S110 ; set target tenperature for bed to 110 degrees and do
not hi ng until reached

M106 & M107: Fan Control

M S<speed> P<index>
M P<index>

Both M106 and M107 commands control all the fans in your 3D printer (Source: Lucas Carolo via AlI3DP)

Yet another essential task for 3D printers, the miscellaneous M106 and M107 commands provide fan
control.

M106 turns a fan on and sets its speed. This is especially useful for the part cooling fan, as different
speeds are required during the printing process during the first layer and bridging.

The speed parameter must be a value between 0 and 255. A 255 value provides 100% power, and
any number within this range will specify a percentage accordingly.

Example

MLO6 ; turn on a fan at maxi nrum (100% speed

MLO6 S128 ; turn on a fan and set it to 50% power

Multiple speed-controlled fans can be defined by the index (P) parameters, as each fan is assigned an
index by the firmware.

Finally, the MLO7 command will power off a specified fan. If no index parameter is provided, the part
cooling fan is usually the one to be shut down.

We're now in a good position to look at an actual piece of code that’s used for 3D printing. G-code
programs can be divided into three distinct sections, as we’ll see next.

It’s worth noting that, if you use a text editor to open a G-code file generated by a 3D slicer, it might
be that it won’t immediately start with G- or M-commands. For example, a slicer like Cura or
Simplify3D starts code by including some of the printing process parameters defined previously
within comments. These lines won’t affect the printing but instead present a quick reference for
parameters like layer height, for example.

Phase 1: Initialization

G90 ; absolute positioning

M82 ; absolute extrusion

M106 SO ; fan at zero speed

M190 S85 ; set bed temperature

G28 ; auto-homing

M400 ; finish moves

M104 5250 ; set hotend temperature

G29; bed leveling

M400 ; finish moves

G1 X1 Y1 Z0.3 F1000 ; move to starting point
M109 S250 ; wait until hotend reaches temperature
G1 X1.0 £9.0 F1000.0 ; start nozzle purge

G1 X100.0 £12.5 F1000.0 ; finish nozzle purge
M117 ; send LCD display message

The "initialization phase" includes all commands required for preparing the printer to print (Source: Lucas Carolo via AlI3DP)

The first section of any program includes the preparation tasks required prior to starting printing the
model. The following are the first six lines of initialization G-code commands from an actual 3D
printing job.

As we now know, the first line says that movements should use absolute positioning, while the
second line tells the extruder to also interpret extrusion in absolute terms.

The third and fourth lines start heating the bed and nozzle to their target temperatures. Note that it

won’t wait for the target temperature, meaning that the printer will auto-home and level the bed
while heating up.

Some initialization routines (e.g. the one used by PrusaSlicer) include a nozzle purging process, like
printing a single straight line before jumping into the printing process.

10

Phase 2: Printing

G92 E0.0000

G1X113.353 Y141.025 E0.1691 F2100
G1X126.647 Y141.025 E0.8516
G1X128.975 Y143.353 £1.0207
G1X128.975 Y156.647 E1.7032
G1X126.647 Y158.975 E1.8723
G1X113.353 Y158.975 E2.5548
G1X111.025 Y156.647 £2.7239
G1X111.025 Y143.353 E3.4065

G92 £E0.0000

G1 E-6.0000 F1500

G1X111.675 Y143.623 F9000

G1 E0.0000 F1500

G92 E0.0000

G1X113.623 Y141.675 £0.1414 F2100
G1X126.377 Y141.675 E0.7963
G1X128.325 Y143.623 £0.9377
G1X128.325 Y156.377 E1.5926

The printing process is mainly composed of a series of movements and extrusions (Source: Lucas Carolo via AlI3DP)

Here’s where the magic happens. If you look at a sliced G-code file, you'll see that it’s impossible for
us to make out what the nozzle is actually doing.

3D printing is a layer-by-layer process, so you'll find that this phase includes many movements within
the XY-plane while printing a single layer. Once that’s done, one tiny movement in the Z direction will
define the beginning of the next layer.

Here is an example of how G-code commands can look during the printing phase:

11

Phase 3: Reset the Printer

G1X103.505 Y152.372 E4.5176

G1 X103.505 Y153.291 E4.5648
G1X103.291 Y153.505 E4.5804

G92 E0.0000

G1 E-6.0000 F1500

; layer end

M107 ; turn fan off

G1X-8

G1Y100

G12Z300

M104 SO ; turn hotend off

M140 SO ; turn bed off

M84 ; turn motors off

; Build Summary

; Build time: 0 hours 15 minutes

; Filament length: 951.0 mm (0.95 m)
; Plastic volume: 2287.49 mm*3 (2.29 cc)
; Plastic weight: 2.86 g (0.01 Ib)

; |Material cost: 0.13

The final commands of G-code are usually resetting positions and status (Source: Lucas Carolo via AlI3DP)

Finally, when printing is done, some final lines of G-code commands bring the printer to a reasonable
default state.

For example, the nozzle might go to a pre-defined position, the hot end and bed heaters are turned
off, and the motors are disabled, among other actions.

12

Terminal Inputs & Outputs

Temperature Contro GCode Viewer Terminal Timelapse
Send: M503
Recv: echo: G21 ; Units in mm (mm)
Recv:

Recv: echo:; Filament settings: Disabled

Recv: echo: M200 SO D1.75

Recv: echo:; Steps per unit:

Recv: echo: M92 X80.00 Y80.00 Z400.00 E155.00

Recv: echo:; Maximum feedrates (units/s):

Recv: echo: MZ203 X300.00 Y300.00 Z40.00 E85.00

Recv: echo:; Maximum Acceleration (units/s2):

Recv: echo: M201 X2000.00 Y2000.00 2200.00 E3000.00

Recv: echo:; Acceleration (units/s2): P<print_accel> R<retract_accel>
T<travel_accel>

Recv: echo: MZ04 P1500.00 R3000.00 T1800.00

Recv: echo:; Advanced: B<min_segment_time_us> Samin_feedrate> T<amin_tr
avel_feedrate> J<junc_dev>

Recv: echo: MZ05 B20000.90 50.90 10.00)0.03

Recv: echo:; Home offset:

Send

OctoPrint has a terminal window for sending and receiving G-code directly (Source: Lucas Carolo via AlI3DP)

Until now, we’ve only talked about the computer sending G-code commands to the printer (usually
transferred via an SD card). However, this isn’t the only method of communication.

Some control software, like Pronterface and OctoPrint, allows direct communication with the 3D
printer, in which case you can input commands manually.

For obvious reasons, it wouldn’t be practical to print anything by sending lines of codes individually.
But sometimes this method of communication is needed for other purposes, like retrieving valuable
information for calibration or even when the 3D printer lacks a display screen.

For example, the M105 “report temperatures” command will retrieve the current nozzle and bed
temperatures (which might then be displayed by something like OctoPrint).

This communication is also very useful for seeing and changing EEPROM settings that are hardcoded
at the firmware level. Parameters like a motor’s steps/mm, maximum feed rates, or PID can be
visualized via M503 (“report settings”), changed manually, and then saved via M500 (“save
settings”).

13

Writing G-code

G-Code Q'n'dirty toolpath simulator

G2 X10 Y3 k10
G X3

Q@ X8 20 R0

@ e

G X9 Y R19

Gl x1o

G2 XD Y19 2-15 R10 Cyech spirel 1)
G3 X~10 Y20 R-10 (yech, long arc 1)
G3 X8 Y10 110 (center)

@1 Qe 2e

G3 Y10 RS 23 (circle in incremental)
Y10 RS Z3 (ogoln, testing modal stote)
G0 G0 X1 (ore Inch to the right)
G5 X-1 K1 (redlus in inches)

G X1 20.3 10.5 0.5 (1, In inches)
@1 (dack to m)

GI0 X190 (do rothing)
()

Some G-code visualization tools can be quite useful for learning how to write code (Source: Lucas Carolo via AlI3DP)

By now, you should be able to read and understand G-code much better. Still, you can also benefit
from writing it.

This G-code online visualization is a great tool for testing your skills, as you can write G-code
commands and simulate them accordingly. It’s actually a lot of fun!

Looking at exported G-code files from slicers should also provide you with some insights as to how G-
code works for 3D printing. Make sure to have a commands reference sheet by your side and explore
the code!

14

Compatibility

— fr— - -
Disconnect Load G-Code Run Gl job SO card Toggle log Show filament

= - Ed
Printer settings Preferences Emergency Stop

TEENGT X121

73584 |

EEDEENDECIID G <~ @D cor Cear 1og

WREY Slicdm = Infilling loyers
19:2 Slc3Ir = Generating support materiol

SUc3Im = Generating skirt
<S> = Bxporting G-code to /Users/Littwin/Librory/Repetier/tenpod).goode

v
v

A8

S Gl X123,
G1 X122.
ZHG1 Xx122.
G1 X116.
Gl X116.
G1 X114,
Gl X114.
Gl X114,
Gl X112.

m Temperature Curve 1 Object placement
A== ' X DE <Xon

.523

677
389
389
283
283
942
835
835
829

Gl:Controlled move
Syntax:C1 [XIX position]] [YIY position}] [2(Z position]) [E{Extruder
position]] [FiFeedrate})
Move in a line to the given position,

m Visualization

C30 R73S75/73868

Slicer m Print panel
d ¢ C-Code

Y112,
Yii4,
Y116.
Y116.
Yizz.
Yizz.
Y123,
Y123.
Yiazs.
Y121.

787

942
230
23
336
336
677
579
570
564

Start code
End code
Run on Kill
Run on Pause
Script 1
Script 2
Script 3
Script 4
Script §

RS

Variables

Layer: 115 Tool: 0 Printing time 1:22

Learning G-code is an ongoing and rewarding task (Source: Repetier)

We hope that, with an understanding of G-code commands, you become a more knowledgeable and
powerful 3D printing user. While G-code isn’t the most complex computer language, it still requires a

lot of practice and study.

Before wrapping up this article, it might be worth talking a bit about G-code compatibility.

There are many types of 3D printing firmware, and each might have different “flavors” of G-code.

This can lead to major compatibility issues, as commands that work for one machine might not work

for another.

Slicer software handles this by passing the code through machine-specific post-processing drivers.

The post-processor detects the incoming code’s flavor and converts the code to something the

firmware will understand.

With that said, we hope you enjoyed this brief guide. Happy coding!

15

